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1. Scope

Standardmalig verwenden modale Verfahren zur Modellierung der Gitterbeugung eine
dquidistante Diskretisierung der lateralen Profilachse(n) /1/. Das funktioniert im allgemeinen Fall
auch ausreichend gut und hat den Vorteil einer vergleichsweise einfachen Implementierung. Bei
Flanken von etwa 85 Grad und dariiber wird jedoch die Flanke nicht mehr ausreichend mit
Stutzpunkten gesampelt. Das Resultat ist ein fehlerhaftes Ergebnis. Das hier aufgezeigte Problem
kann mit der Methode der angepassten Auflésung (adaptive Resolution) deutlich abgemildert
werden. Dieses Verfahren beruht im Kern darauf, anstelle einer dquidistanten Abtastung der x-
Achse eine dem Profil folgende Diskretisierung vorzunehmen. An Stellen starken Anstiegs oder
Abfalls des Profils sowie in der Nahe von Ecken wird entsprechend feiner und in den restlichen,
flachen Bereichen wird grober abgetastet. In Abb. 1 sind diese beiden Félle gegenlibergestellt,
wobei die orangenen Punkte das Standardverfahren (CCM) und die blauen Punkte die adaptive
Resolution Methode (C-AR) repradsentieren. Besonders deutlich tritt der Unterschied an den Ecken
zu Tage. Wahrend beim C-AR die Punkte so dicht beieinander liegen, dass sie kaum aufgeldst sind,
ist beim Standardverfahren ein deutliches Gap in diesem Bereich zu sehen.

1.20E+02

1.00E+02

Y 4
8.00E+01 —@—CAR //
Y 4

: ccMm
6.00E+01

4.00E+01 //
2.00E+01 //

4
0.00E+00 vxxz===f
175 180 185 190 195 200

Y-Position
x

x-Position

Abbildung 2: Profildiskretisierung im Vergleich zwischen Standard C-Methode und CM mit adaptiver Resolution



2. Theorie und Implementierung der C-Methode mit AR

Die Theorie der Methode der adaptiven Resolution ist in /3/ im Detail dargelegt. Bei der Standard C-
Methode lautet die Koordinatentransformation: x=u, y =v + p(u), z = w.

Das Eigenwertsystem welches aus dem Differential-Gleichungssystem hervorgeht kann wie folgt
geschrieben werden:
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Die Matrizen La und Lg ergeben sich aus der Profilfunktion p wie folgt:
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Hierbei sind Y die Eigenvektoren, rq die Eigenwerte, a ist eine Diagonalmatrix, die aus den Elementen

ay, = sind + m%gebildet wird, I ist die Einheitsmatrix und p eine Matrix, die aus den Elementen
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gebildet wird. Ferner sind A die Lichtwellenlange, d die Gitterperiode und p die Profilfunktion. Die
Matrix p ist die Toeplitz-Matrix der Fourier-Transformierten der Ableitung der Profilfunktion.

Im Unterschied dazu wird bei der AR-Methode zusatzlich eine Koordinaten-Transformation der x-
Achse notwendig, man hat also: x = f(u), y = v + p(f(u)), z = w. Damit ergibt sich eine Lésung mit dem
gleichen charakteristischen Eigensystem jedoch mit von (2) abweichenden Matrizen La und Leg:
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Die Transformation fiir ein einfaches Trapezprofil ist in den Formeln (35) und (36) in /3/ im Detail
ausgefihrt. Im Rahmen der Implementierung der C-AR Methode wurde diese auf allgemeine
stiickweise lineare Profile erweitert.



3. Simulationen

Die Beugungseffizienzen wurden fir symmetrische, metallische Trapezprofile mit Flankenwinkeln
zwischen 60 und 90 Grad fiir folgende Verfahren miteinander verglichen:

e (C-Methode mit FFT (CC)

e C-Methode mit diskreter FT (1C)

e RCWA/2/

e (C-Methode mit Adaptiver Auflésung (C-AR).

Die Ergebnisse sind fir die nullte und erste Beugungsordnung in TE- und TM-Polarisation in den
folgenden Abbildungen zu sehen.
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Abbildung 2: Vergleich der Beugungseffizienz der 0.ten Ordnung vs. Flankenwinkel fiir ein Trapezprofil

TE1 ™M1

22 40
= S
T2 ~. 38
N N
§ 20 5
N —8— RCWA N 36 G
E 19 T om—— b=t
H ) —e—CC &b
= e 34
S 18 S
& ® ——CCAR .
o 17 o}
m 1c o

16 30

60 70 80 90 60 70 80 90
Flankenwinkel/ Grad Flankenwinkel/ Grad
Abbildung 3: Vergleich der Beugungseffizienz der 1.ten Ordnung vs. Flankenwinkel fiir ein Trapezprofil

Wie die Simulationen zeigen sind die Ergebnisse der C-Methode mit adaptiver Auflosung auch fir
Flankenwinkel gréRer als 80 Grad nahezu identisch mit denen des hier als Referenzverfahren
betrachteten RCWA sind. Lediglich fiir TM-Polarisation sind leichte Unterschiede erkennbar. Diese
fihren wir auf die bekannten Probleme der RCWA bei metallischen Substraten in TM zurick.
Weiterhin ist erkennbar, daR die Standard-C-Methode in beiden Implementierungen (mit FFT sowie



mit diskreter FT) bis zu Flankenwinkeln von etwa 80 Grad als ausreichend genau betrachtet werden
kann. Zudem fallen die deutlichen Unterschiede fiir die beiden Implementierungen der Standard C-
Methode auf. In der Regel liegen die Ergebnisse fir die Variante mit diskreter FT naher an den
Referenzwerten von RCWA bzw. C-AR.

Referenzen

/1/ L. Li, J. Chandezon, G. Granet , J.-P. Plumey, ,Rigorous and efficient grating-analysis method
made easy for optical engineers,” Appl. Opt. 38 (2), 304-313 (1999).

/2/ Moharam MG, Pommet DA, Grann EB. Stable implementation of the RCWA for surface-relief
gratings: enhanced transmittance matrix approach. J. Opt. Soc. Am. A 12, 1077-1086 (1995).

/3/ G. Granet, J. Chandezon, J.-P. Plumey, ,Reformulation of the coordinate transformation
method through the concept of adaptive spatial resolution. Application to trapezoidal
gratings,” J. Opt. Soc. Am. A 18 (9), 2102-2108 (2001).



